skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schvartzman, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous studies of lightning detection by radar mostly consisted of observations with reflector‐antenna systems yielding slow volume scan times. Phased array radars offer much faster scan times that are likely to capture echoes from propagating lightning channels. Rapidly updated range‐height indicator scans were used to observe severe storms that occurred in central Oklahoma with the fully digital S‐band Horus PAR to examine echoes from lightning plasma. Numerous lightning echoes were observed during the sampling period in good spatial and temporal agreement with lightning mapping array detections of very high frequency radiation sources. Statistically, they result in increased horizontal reflectivity factor, deviations in radial velocity and spectrum width, highly variable differential reflectivity and differential phase, and decreases in correlation coefficient. Results presented also highlight the capability of phased array radars to better observe lightning compared to current radars, and aid in the study of storm electrification and lightning physics. 
    more » « less
  2. Abstract The scientific community has expressed interest in the potential of phased array radars (PARs) to observe the atmosphere with finer spatial and temporal scales. Although convergence has occurred between the meteorological and engineering communities, the need exists to increase access of PAR to meteorologists. Here, we facilitate these interdisciplinary efforts in the field of ground-based PARs for atmospheric studies. We cover high-level technical concepts and terminology for PARs as applied to studies of the atmosphere. A historical perspective is provided as context along with an overview of PAR system architectures, technical challenges, and opportunities. Envisioned scan strategies are summarized because they are distinct from traditional mechanically scanned radars and are the most advantageous for high-resolution studies of the atmosphere. Open access to PAR data is emphasized as a mechanism to educate the future generation of atmospheric scientists. Finally, a vision for the future of operational networks, research facilities, and expansion into complementary radar wavelengths is provided. 
    more » « less